
Erlang
Joel Smith

Luke Martin

Background Information

• Erlang was released in 1986 (36 years old)

• General-purpose, functional programming language

• It was influenced by Lisp, Prolog and Smalltalk

• Erlang was made to improve the development of telephone
applications

Program Overview

Euler Phi Totient Function

• RSR (Reduced Set of Residues)
{n ∈ Z+ | 1 ≤ x ≤ n and gcd(x, n) = 1}

• Euler Φ Function
Φ(n) = | {n ∈ Z+ | 1 ≤ x ≤ n and gcd(x, n) = 1} |

Φ(24) = 8

RSR = {1, 5, 7, 11, 13, 17, 19, 23}

Syntax Rules

• A piece of any type of data is defined as a term

• An Atom is a literal, starts with a lowercase character

* A list of terms

* Second argument is considered an Atom

Syntax Rules Continued

Ending Lines in Erlang

• Several ways to end a line

• , Comma Separates Expressions (Figure 2)

• . Period Used at the end of Functions (Figure 1)

• ; Semicolon is a clause separator
* As used in Functional Clauses * As used in Expression Branches

Fig. 1

Fig. 2

Syntax Rules Continued

Other syntax rules

• The use of the __ (underline), the compiler just ignores that value

• The -> calls the body of a function

• Comments start with %

Binding and Scoping Rules

• Variables Bindings are available until the end of the scope.

• Variables introduced in a clause are only available within the body.

• Every function is by default local, unless exported.

• Global scoping is not available

* Exports two functions to the client

Exports & Modules
• Modules are functions grouped in a file

• Without Exports, the Client can’t call any functions
• Formatted as: -exported([function/# of arguments], …)

* Compiling a Module

* Returns a Tuple containing
{status, module_name}

• Calling a Function is done as so:
• Module:Function_Name(args).

* Calling a Modules Function

Control Flow

• Erlang provides If and Case Statements
• May be included within functions

• Return value of the Body is the return of the case expression

* Expression: gcd(N, C) == 1
* Pattern 1: true

* Pattern 2: false

Control Flow

Associativity

• Erlang supports the use of Left and Right associative

Left Associative Right Associative

div ++ --

+ - = !

The use of parentheses help with precedence

Recursion

• In Erlang, iteration isn’t achievable, so recursion is used.

• As a result, there are no for or while loops.

• Tail recursion is used for recursive calls.

* Notice how rsr_phi is called at
the tail of the function

Data Types

• There are many data types. Some of the important ones are

• Terms, Number, Atom, Bit Strings and Binaries, Fun, Reference, List
and many more.

• The index of the first element is one.

• There are also integers, floats and chars.

Data Types

• For the RSR, PHI program, we used Lists and Tuples as Non-Primitive
Data types.
• A list contains terms

• A tuple has a fixed number of terms

* Creating a Tuple

* Adding Elements to a List

* Accessing elements requires use
of the element function

Sources

• https://www.tutorialspoint.com/erlang/erlang_tuples.htm

• http://geekhmer.github.io/blog/2015/01/20/erlang-control-flow-
statement/

• https://elixir-lang.readthedocs.io/en/latest/technical/scoping.html

• https://www.erlang.org/doc/index.html

https://www.tutorialspoint.com/erlang/erlang_tuples.htm
http://geekhmer.github.io/blog/2015/01/20/erlang-control-flow-statement/
https://elixir-lang.readthedocs.io/en/latest/technical/scoping.html
https://www.erlang.org/doc/index.html

	Slide 1: Erlang
	Slide 2: Background Information
	Slide 3: Program Overview
	Slide 4: Syntax Rules
	Slide 5: Syntax Rules Continued
	Slide 6: Syntax Rules Continued
	Slide 7: Binding and Scoping Rules
	Slide 8: Exports & Modules
	Slide 9: Control Flow
	Slide 10: Control Flow
	Slide 11: Recursion
	Slide 12: Data Types
	Slide 13: Data Types
	Slide 14: Sources

