
Smith 1

An Android App

By Joel Smith

04/29/2022

Smith 2

Introduction

Before getting into the details of my application, I would like to give a brief

overview of what Roblox & Roblox Studio is. Roblox is a platform where solo game

developers & teams of developers can create their games and publish them for the

world to play. Roblox is geared toward children, although there are many games on

the platform that teenagers and young adults would enjoy playing. Developers create

their games on Roblox Studio. Roblox Studio is very similar to Android Studio since it

gives you the resources to develop whatever you want! Roblox’s primary scripting

language is a Lual (a subset of Lua). I have been developing games on Roblox Studio

for over three years now, so it felt very natural that I’d try to connect Android Studio to

it in one way or another.

RoServer is a multi-purpose developer panel meant for streamlining user data

so Game Developers & Administrators can view feedback quickly and at ease.

Typically, logging user data is a time-consuming task that the developers could be

using to add to their game.

I considered many thoughts while developing this app. Although, the most

crucial feature that would make this process more at ease is, firstly, the user interface.

When using an app meant for data access, you don’t want to be overwhelmed with

crowded UI or the trivialities that many apps face. Thus, I created an app with a very

intuitive interface that anyone can understand in a few clicks.

The easiest way to display user information in Android Studio was through

using Text Views and the utilization of Android ViewGroups such as Recycler Views,

Fragments, and Activities. Recycler Views allowed me to dynamically insert data into a

container capable of storing large amounts of views. Fragments were important for

switching between frames and user information. Finally, activities allowed me to

display the same view on the screen while traversing fragments.

The first significant design element is Database Management. To accomplish

the goal of my app, I needed to explore many options for data storage. A handful of

the choices were: Firebase, PHPMyAdmin, and MySQL. In my case, I needed a

database that would allow me to connect through a web server. The most obvious

choice here is MySQL. Making this decision was almost non-sensical since I knew SQL

already. All that was left was to learn some PHP, and I was ready to start storing data.

Smith 3

The second significant design element is unique Animations. An easy way to

make the User Interface feel clean and unique is to add animations. There are a few

animations added throughout my app for effect. The first type of animation is my

Splash Screen animation. The Splash Screen animation I made through a website

called ShapeShifters. This website allowed me to morph a path from one shape to

another. ShapeShifters also made it easy to translate the animation to an XML file.

Transitioning also happened to be very important throughout my app as well. For

example, one frame may transition from the left or right side of the screen to add a

nice effect while complementing UI well.

Here is an example of what it may look like if a player is banned on Roblox

through Android Studio. On the left is our Android Studio tablet, and on the right is a

Roblox game. As you can probably tell, the reason displayed on the right image is

“Spamming heal spells” where the player banned is JCodinDev_01. If the player isn't

banned, the disconnected notification would disappear. I’ll be going into more detail

on this in the implementation of my app.

Smith 4

User Experience

Main Fragments

Figures 1, 2, and 3 Respectively

Figures 4, 5, and 6 Respectively

Smith 5

Firstly, during login, the administrator will be required to log in to their

account. I have no create account feature in my app for security reasons. When a user

attempts to make a login and fails, they will receive an alert notifying that to log in

again. There are four alert types:

• Fill out Both Fields

• Missing Password

• Missing Username

• Invalid Login Attempt

Immediately after login, administrators will have a Find User fragment

displayed (Figure 1). The Find User fragment is displayed first since administrators will

most likely be looking for particular users rather than wanting to look at reports.

If the admin decides they want to search for a user, they can do it by typing in

the player’s userId or username. Although they have a choice, this will not alter the

search. If the search is successful in the table, a new fragment will be displayed. From

the user fragment (Figure 3), you will either have the option to Ban or Unban the user.

The choice is dependent on their previous moderated state. Take note that if you

choose to ban a player, a reason will need to be provided (Figure 5). If you decide to

unban the player: the description, moderator, and user information will be displayed.

Finally, the user will have the option to display all of the reports in descending

order from oldest to newest. All of the views are contained within a recycler view,

where the user will then be able to select any of the dates they want. After the user

selects a date, a new fragment is displayed (Figure 4). This fragment display’s all of

the report’s information. As of right now, the reports can only be displayed from

oldest to newest, although I plan on having multiple sorting methods in the future.

Smith 6

Implementation Android Studio

 Figure 7.

Smith 7

Shown above is a flow chart containing the flow of my app. The primary

purpose of this flow chart is to show where Web Server requests occur. The Web

Server connections are Blue Cylinders on the diagram. At the top of Figure 7, notice it

says the launch is where most of the data is loaded. When data is loaded, everything

gets stored within a companion object class, to which an Android Studio class has

access. Companion objects allow me to dynamically retrieve & manipulate data

without constantly needing to make Web Server requests. Some examples where I

use companion objects are for retrieving login users and all of the player reports.

Immediately after an admin looks up a user from the Search User fragment, a

Web Server request is delivered. Although, why might I make a Web Server request

on the search and not just load it at launch? The simple answer is that player data is

constantly changing, and the player’s information is not always guaranteed to be the

same as when you first launched the app. This allows the admin to always view up to

date information on players.

Finally, Web Server requests are delivered when you delete a report from the

search fragment and Banning / Unbanning a user. As shown in in Figures 3 & 6, the

administrator can also ban & unban users. When editing a user’s moderation status,

the change needs to be input into the database. The Web Server will send the query

to the database, and the Web request is complete.

One problem that frequently occurs when making Web Server requests from

the main thread are app crashes. When handling Web Server connections, you are

connecting through the internet. If not dealt with correctly, your Android Studio app

can be left handing and cause a crash. So this doesn’t happen, you need to run the

connection through a separate thread. Coroutines were my goto in this case, for the

server will not crash if a connection is unstable. Couroutines allow my app to run code

off of the main thread, so if a server connectivity issue occurs, everything on the main

thread isn’t affected.

Smith 8

Implementation Web Server

 Since I was unable use Firebase for a database, I needed to connect to a Web

Server. I decided to use Blue Host to host my website. Although this wasn’t a free

method, I found my topic so interesting that I decided to splurge. BlueHost then

provided me with a domain which I could use from Android Studio & Roblox Studio

to make web calls. This was the most important step in the development process

without a doubt. Without a proper Web Server, I wouldn’t have been able to connect

to a database, rendering my project impossible.

 As for the scripting language I decided to use for the Web Server, I went with

PHP. After doing research, I figured that PHP would be the easiest to use and

implement. Once I figured out how to use PHP, all that was left was querying the

database for necessary information, and echoing it out in JSON format as if it were

part of the pages body. This made it very easy to make queries from Android Studio.

Implementation Roblox Studio

Roblox Studio I spent the least amount of time on during this project. From Roblox

Studio I wrote a few scripts:

• When the player joins, add them to the database

• When the user submits a report, add them to the database.

• The ability to ban a user from Roblox. (Administrator only)

After I created the proper interface, I created a script that used Roblox’s

HTTPService. Thankfully, Roblox’s API made this a simple process since they have a

method: PostAsync() which will make an HTTP POST request to the Web Server.

The obstacle, in this case, wasn’t using the API but finding the necessary

information to retrieve data on the Web Server. Since storing data externally is an

uncommon process in Roblox, I could only find 1-to 2 Forum posts that went over this

topic. Although they barely scraped the surface with the information I needed, it

pushed me in the right direction.

Smith 9

Miscalleneous

After completion, I learned so much in multiple different fields, it makes me very

esstatic. The overall organization of this project happened to be a huge obstacle,

which thankfully through my previous large scale projects have helped me

significantly. I learned a lot about Web Servers and practical applications of making

SQL calls to databases. This immediately allowed me to get access to this information

remotely from Roblox Studio & Android Studio.

 The first few days of me beginning this project I didn’t touch any code. I was

strictly doing research on if this was actually possible from Roblox. I was forced to

change the path I underwent multiple times before I came to a conclusion.

The initial project that inspired this app is a game I’m currently working on with

Roblox’s platform:

https://www.roblox.com/games/6998582502/Dungeon-Crusaders-TESTING

The game I’ve been working on since June (Still in Testing) and has been a huge

project since then.

Our next milestone is 1M+ plays.

https://www.roblox.com/games/6998582502/Dungeon-Crusaders-TESTING

Smith 10

References

https://developer.roblox.com/en-us/api-reference/class/HttpService

https://devforum.roblox.com/t/using-an-external-database-to-manage-your-data-

and-more-part-1/1001029/3

https://devforum.roblox.com/t/httpservice-and-sql/10650/3

https://developer.android.com/guide/topics/ui/layout/recyclerview

https://developer.android.com/guide/fragments

https://developer.android.com/guide/components/activities/intro-activities

https://developer.roblox.com/en-us/api-reference/class/HttpService
https://devforum.roblox.com/t/using-an-external-database-to-manage-your-data-and-more-part-1/1001029/3
https://devforum.roblox.com/t/using-an-external-database-to-manage-your-data-and-more-part-1/1001029/3
https://devforum.roblox.com/t/httpservice-and-sql/10650/3
https://developer.android.com/guide/topics/ui/layout/recyclerview
https://developer.android.com/guide/fragments
https://developer.android.com/guide/components/activities/intro-activities

